智能机器人的现状

2024-05-06 22:19

1. 智能机器人的现状

当年宣称“毁灭人类”的智能机器人,它的现状如何?被销毁了吗?

智能机器人的现状

2. 智能机器人的现状和发展趋势?

需求潜力巨大,行业快速发展
近年来,人工智能技术的发展和突破使服务机器人的使用体验进一步提升,语音交互、人脸识别、自动定位导航等人工智能技术与机器人融合不断深化,智能产品不断推出。例如,优必选联合腾讯云小微发布智能教育娱乐人形机器人Qrobot Alpha,通过整合腾讯云小微的智能语音交互能力,以及QQ音乐、企鹅FM、翻译、百科、个人助手、智能家居等内容和服务,加速向生活领域延伸。
2013-2018年整体处于飞速增长阶段,2018年中国服务机器人市场规模有望达到18.4亿美元,同比增长约45.3%,高于全球服务机器人市场增速。到2020年,随着停车机器人、超市机器人等新兴应用场景机器人的快速发展,中国服务机器人市场规模有望突破40亿美元。


中国已在医疗、教育、烹饪等机器人的应用领域开展了广泛的研究,随着机器人技术水平进一步提升,市场对服务机器人的需求快速扩大,应用场景不断拓展,应用模式不断丰富。如沈阳新松与国内知名医院合作,共同研发出国内首台应用于肿瘤治疗的消融医疗辅助机器人,大大提高了手术的精准度。沈阳中瑞福宁推出多款养老助残服务机器人,Bestic用餐辅助机器人体积小巧,操作简单,饮食障碍人士能按照自己的节奏和意愿吃饭;与此同时,一些优秀的平台型企业如云知声、出门问问、思必驰等为机器人公司提供使能技术,使得智能语音迅速得以普及,从而拉动产业的高速成长。
根据中国电子学会发布的数据来看,2018年中国家用服务机器人、医疗服务机器人和公共服务机器人市场规模预计分别为8.9亿美元、5.1亿美元和4.4亿美元,家用服务机器人和公共服务机器人市场增速相对领先。

创意出众和就有技术优势的企业发展态势良好
近年来,相当一部分智能机器人企业创新极为活跃,凭借出众的产品创意、独特的技术优势、优秀的核心团队获得了市场和资本的双重认可,展现出良好的发展态势。根据不同的应用场景,我们可将智能机器人分为工业、服务、特种三大类别,其中,服务类比又可再细分为家用服务、医疗服务和公共服务。围绕业务规模、创新力度、品牌价值、投融资情况等维度,我们针对目前国内相对较为典型的一批智能机器人企业进行了活跃度评价,具体分为三个梯队,以便为后续行业研究、市场分析和资本投向提供参考依据。



家用服务机器人将成为行业重要细分领域
2018年,全球家用服务机器人、医疗服务机器人和公共服务机器人市场规模预计分别为44.8亿美元、25.4亿美元和22.3亿美元,其中家用服务机器人市场规模占比最高达48%,分别高于家用服务机器人、公共服务机器人21、24个百分点。
而对比我国,截至2017年底,我国60岁及以上老年人口有2.41亿人,占总人口17.3%。随着人口老龄化趋势加快,以及医疗、教育需求的持续旺盛,我国服务机器人存在巨大市场潜力和发展空间。2018年我国服务机器人市场规模有望达到18.4亿美元,同比增长约43.9%,高于全球服务机器人市场增速。其中,我国家用服务机器人、医疗服务机器人和公共服务机器人市场规模分别为8.9亿美元、5.1亿美元和4.4亿美元,家用服务机器人和公共服务机器人市场增速相对领先。

以上数据来源参考前瞻产业研究院发布的《中国服务机器人行业战略规划和企业战略咨询报告》。

3. 智能机器人是怎么发展的?

专家系统和智能机器人是人工智能发展最快的两个分支,前者是模拟人的思维活动,后者则要代替人的肢体行为。智能机器人是机器人发展的高级阶段。第一代是工业机器人,在20世纪50年代出现,由于其灵活性(可编程)、通用性,在许多工业领域(首先是汽车工业)得到广泛应用。第二代是具有感知能力的机器人,从20世纪80年代中期起,以装配机器人为先导,应用于电子、电气、精密机械制造等产业。第三代是具有智能的机器人。一个智能机器人应具备三个方面的能力:感知环境的能力,执行某种任务而对环境施加影响的能力,把感知与行动联系起来的思考能力。
当前国外的智能机器人已转为面向中小企业甚至个人,美日等国已研制出用于工业、医疗、服务等领域的小型微型机器人。如日本三菱电机公司的垂直多关节型微型机器人,有五个自由度,用PC机编程,操作简单,价格低廉,适合于装配和移载作业。美国的食品行业正在普及服务机器人,它可在餐馆内环形轨道上行走,顾客在座位上按动开关,机器人听召即来,为顾客送上快餐或饮料,服务时间仅需15~30秒。日本已有家庭清扫与警卫机器人、医院护理机器人、娱乐机器人。

智能机器人是怎么发展的?

4. 智能机器人的现状和发展趋势

随着科技的进步,快速发展的人工智能(AI)技术已经改变世界,AI能做到的事情越来越多,我们不仅重视AI技术发展,也展现出对人文情怀的关注,让技术变得不再是那么冷冰冰,充满了温暖和感动。我们的最终目的,是利用AI技术,突破人类各种限制,创造一个更好世界帮助人类更好地生活
豪铖独创家用机器人现在实现了,自动扫地,手机投屏,
激光影像,视频点播,网络电视,体感游戏,空气净化,在线音乐,氛围灯光,商务圈,IOT物联,中英文互译,儿童陪伴早教,内置摄像,等基本覆盖了家用所需,虽然没有电影那么酷,但也解决了家里许多繁琐之事,契合家庭使用需求 氛围、场景随心构建

5. 为什么说智能机器人是真正的机器人?

智能机器人有相当发达的“大脑”。在脑中起作用的是中央计算机,这种计算机跟操作它的人有直接的联系。最主要的是,这样的计算机可以进行安排的动作。
正因为这样,我们才说这种机器人才是真正的机器人,尽管它们的外表可能有所不同。

为什么说智能机器人是真正的机器人?

6. 机器人足够“智能”了吗?

专家介绍,其实现在不少机器人的“智力”还相当有限。今年上半年网上关于申通分拣机器人“小黄人”的视频受热议,大家纷纷为“小黄人”的熟练作业点赞。

申通发展研究中心副主任邓德庚表示,未来越来越多的机器人将参与物流辅助工作,但还有很大提升空间。比如机器人摆件不那么工整、部分单据仍为手写导致无法完全数字化录入信息等。

业内普遍认为,现阶段机器人在运动层面上尚显不足,其能效比、灵活性仍远远达不到人类肌肉群协调动作的水平,十分“脆弱”。比如大多数工业机器人还是以机械手臂为主,大部分企业还不具备研发制造柔性臂的能力,导致机器人的灵敏度有限,能做的动作很少。

多功能机器人离我们的日常生活还很远,尤其在自然语义理解方面,机器人仍有巨大的发展空间。

7. 现代机器人的现状

随着计算机技术和人工智能技术的飞速发展,使机器人在功能和技术层次上有了很大的提高,移动机器人和机器人的视觉和触觉等技术就是典型的代表。由于这些技术的发展,推动了机器人概念的延伸。80年代,将具有感觉、思考、决策和动作能力的系统称为智能机器人,这是一个概括的、含义广泛的概念。这一概念不但指导了机器人技术的研究和应用,而且又赋予了机器人技术向深广发展的巨大空间,水下机器人、空间机器人、空中机器人、地面机器人、微小型机器人等各种用途的机器人相继问世,许多梦想成为了现实。将机器人的技术(如传感技术、智能技术、控制技术等)扩散和渗透到各个领域形成了各式各样的新机器——机器人化机器。当前与信息技术的交互和融合又产生了“软件机器人”、“网络机器人”的名称,这也说明了机器人所具有的创新活力。不过,人类在享受机器人带来的服务及便利的同时,也担心未来某一天,过度聪明的机器人可能给人类带来难以预见的危害,尤其是安装了人工智能系统的机器人,将来是否会在智能上超越人类,以至对就业造成影响,甚或威胁人类的生命财产?就像科幻电影中所描绘的:机器人在越来越多的领域取代了人类,最终站到了人类的对立面,由帮手变成了仇敌。其实,这方面的担心完全没有必要。智能机器人并非无所不能,它的智商只相当于4岁的儿童,机器人的“常识”比正常成年人就差得更远了。目前,科学家尚未搞清楚人类是如何学习和积累“常识”的,因此,将其应用到计算机软件上也就无从谈起。美国科学家罗伯特·斯隆近日表示,人工智能研究的难题之一,就是开发出一种能实时做出恰当判断的计算机软件。日本科学家广濑茂男认为,即使智能机器人将来具有常识,并能进行自我复制,也不可能带来大范围的失业,更不可能对人类造成威胁。早在上世纪90年代,中国科学家周海中就指出:机器人在工作强度、运算速度和记忆功能方面可以超越人类,但在意识、推理等方面不可能超越人类。

现代机器人的现状

8. 智能机器人的发展方向

不过,尽管机器人人工智能取得了显著的成绩,控制论专家们认为它可以具备的智能水平的极限并未达到。问题不光在于计算机的运算速度不够和感觉传感器种类少,而且在于其他方面,如缺乏编制机器人理智行为程序的设计思想。你想,现在甚至连人在解决最普通的问题时的思维过程都没有破译,人类的智能会如何呢——这种认识过程进展十分缓慢,又怎能掌握规律让计算机“思维”速度快点呢?因此,没有认识人类自己这个问题成了机器人发展道路上的绊脚石。制造“生活”在具有不固定性环境中的智能机器人这一课题,近年来使人们对发生在生物系统、动物和人类大脑中的认识和自我认识过程进行了深刻研究。结果就出现了等级自适应系统说,这种学说正在有效地发展着。作为组织智能机器人进行符合目的的行为的理论基础,我们的大脑是怎样控制我们的身体呢?纯粹从机械学观点来粗略估算,我们的身体也具有两百多个自由度。当我们在进行写字、走路、跑步、游泳、弹钢琴这些复杂动作的时候,大脑究竟是怎样对每一块肌肉发号施令的呢?大脑怎么能在最短的时间内处理完这么多的信息呢?我们的大脑根本没有参与这些活动。大脑——我们的中心信息处理机“不屑于”去管这个。它根本不去监督我们身体的各个运动部位,动作的详细设计是在比大脑皮层低得多的水平上进行的。这很像用高级语言进行程序设计一样,只要指出“间隔为一的从1~20的一组数字”,机器人自己会将这组指令输入详细规定的操作系统。最明显的就是,“一接触到热的物体就把手缩回来”这类最明显的指令甚至在大脑还没有意识到的时候就已经发出了。把一个大任务在几个皮层之间进行分配,这比控制器官给构成系统的每个要素规定必要动作的严格集中的分配合算、经济、有效。在解决重大问题的时候,这样集中化的大脑就会显得过于复杂,不仅脑颅,甚至连人的整个身体都容纳不下。在完成这样或那样的一些复杂动作时,我们通常将其分解成一系列的普遍的小动作 (如起来、坐下、迈右脚、迈左脚)。教给小孩各种各样的动作可归结为在小孩的“存储器”中形成并巩固相应的小动作。同样的道理,知觉过程也是如此组织起来的。感性形象——这是听觉、视觉或触觉脉冲的固定序列或组合 (马、人),或者是序列和组合二者兼而有之。学习能力是复杂生物系统中组织控制的另一个普遍原则,是对先前并不知道、在相当广泛范围内发生变化的生活环境的适应能力。这种适应能力不仅是整个机体所固有的,而且是机体的单个器官、甚至功能所固有的,这种能力在同一个问题应该解决多次的情况下是不可替代的。可见,适应能力这种现象,在整个生物界的合乎目的的行为中起着极其重要的作用。本世纪初,动物学家桑戴克进行了下面的动物试验。先设计一个带有三个小平台的T形迷宫,试验动物位于字母T底点上的小平台上,诱饵位于字母T横梁两头的小平台上。这个动物只可能做出以下两种选择,即跑到岔口后,它可以转向左边或右边的小平台。但是,在通向诱饵的路上埋伏着使它不愉快的东西:走廊两侧装着电极,电压以某种固定频率输进这些电极之中,于是跑着经过这些电极的动物便受到疼痛的刺激——外界发出惩罚信号。而另一边平台上等着动物的诱饵则是外界奖励的信号。实验中,如果一边走廊的刺激概率大大超过另一走廊中的刺激概率,那么,动物自然会适应外界情况:反复跑几次以后,动物朝刺激概率低、痛苦少的那边走廊跑去。桑戴克作试验最多的是老鼠。如老鼠就更快地选择比较安全的路线,并且在惩罚相差不大的情况下自信地选择一条比较安全的路线,其它作试验的动物是带着不同程度的自适应性来体现这一点的,不过,这种能力是参加试验的各种动物都具有的。控制机器人的问题在于模拟动物运动和人的适应能力。建立机器人控制的等级——首先是在机器人的各个等级水平上和子系统之间实行知觉功能、信息处理功能和控制功能的分配。第三代机器人具有大规模处理能力,在这种情况下信息的处理和控制的完全统一算法,实际上是低效的,甚至是不中用的。所以,等级自适应结构的出现首先是为了提高机器人控制的质量,也就是降低不定性水平,增加动作的快速性。为了发挥各个等级和子系统的作用,必须使信息量大大减少。因此算法的各司其职使人们可以在不定性大大减少的情况下来完成任务。总之,智能的发达是第三代机器人的一个重要特征。人们根据机器人的智力水平决定其所属的机器人代别。有的人甚至依此将机器人分为以下几类:受控机器人——“零代”机器人,不具备任何智力性能,是由人来掌握操纵的机械手;可以训练的机器人——第一代机器人,拥有存储器,由人操作,动作的计划和程序由人指定,它只是记住 (接受训练的能力)和再现出来;感觉机器人——机器人记住人安排的计划后,再依据外界这样或那样的数据 (反馈)算出动作的具体程序;智能机器人——人指定目标后,机器人独自编制操作计划,依据实际情况确定动作程序,然后把动作变为操作机构的运动。因此,它有广泛的感觉系统、智能、模拟装置(周围情况及自身——机器人的意识和自我意识)